0 просмотров

Определение и свойства биссектрисы угла треугольника

Определение и свойства биссектрисы угла треугольника

В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.

  • Определение биссектрисы угла треугольника
  • Свойства биссектрисы треугольника
    • Свойство 1 (теорема о биссектрисе)
    • Свойство 2
    • Свойство 3
    • Свойство 4
    • Свойство 5
  • Пример задачи

Определение биссектрисы угла

Помнишь шутку: «Биссектриса это крыса, которая бегает по углам и делит угол пополам»?

Так вот, настоящее определение биссектрисы угла очень похоже на эту шутку — биссектриса действительно делит пополам угол (а не отрезок, например):

Биссектриса угла – это линия, делящая угол пополам.

Или еще вот такое определение биссектрисы:

Биссектриса угла – это геометрическое место точек, равноудаленых от сторон угла.

А вот определение биссектрисы треугольника:

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Тебе встретилась в задаче биссектриса? Постарайся применить одно (а иногда можешь и несколько) из следующих потрясающих свойств.

Свойства и соотношения

На основании теоремы о биссектрисах Δ были получены некоторые важные свойства, которые рекомендуется применять при решении задач и доказательства других утверждений:

Статья в тему:  Во сне быть беременной животом. Что снится к беременности, кроме рыбы. К чему снится живот беременной по соннику Миллера

  1. Центр вписанной окружности соответствует точке их пересечения.
  2. Точка при пересечении делит биссектрису по такому соотношению: отношение суммарного значения прилежащих к противолежащей стороне.
  3. Угол между биссектрисами двух смежных углов является прямым.
  4. В равнобедренном Δ равны только 2 биссектрисы, а в равностороннем — 3. Кроме того, она является медианой и высотой.

При решении задач нужно находить их длину (L).

Для удобства необходимо обозначить стороны таким образом: КМ = d, КL = e и LМ = f, чтобы воспользоваться следующими формулами через известные параметры треугольника:

  1. Все стороны: Lm = [2 * (d * e * p * (p — f))^(½)] / (d + e), Lк = [2 * (d * f * p * (p — e))^(½)] / (d + f) и Ll = [2 * (d * f * p * (p — e))^(½)] / (d + f). Параметр «р» — полупериметр, т. е. р = (d + e + f) / 2.
  2. Стороны и угол: Lm = (2 * d * e * cos (∠M)) / (d + e), Lk = (2 * d * f * cos (∠K)) / (d + f) и Ll = (2 * f * e * cos (∠L)) / (f + e).

Соотношения позволяют найти не только длины Lk, Lm и Ll, но и другие параметры треугольников. Следует отметить, что углы во второй группе формул соответствуют биссектрисам, исходящим из них.

Таким образом, для решения задач на нахождение длины биссектрис необходимо знать теорию, доказательство теоремы, свойства, а также основные соотношения.

Пересечение биссектрис треугольника

Как можно было заметить по приведенным выше рисункам, у биссектрис треугольника есть одно важное свойство. А именно:

Статья в тему:  Когда вас оскорбляют. Что делать если тебя оскорбили: способы наказания

Биссектрисы треугольника всегда пересекаются в одной точке, называемой инцентром!

Это правило является аксиомой (что это такое?) и не допускает никаких исключений. Другими словами, вот такого быть не может:

Если вы видите такую картину, то перед вами точно не БИССЕКТРИСЫ. Во всяком случае, минимум один отрезок таковой не является. А может и все три.

А есть еще один интересный факт, связанный с пересечением биссектрис треугольника.

Центр пересечения биссектрис в треугольнике является центром окружности, который списан в эту фигуру.

Это свойство биссектрис на самом деле не только выглядит интересно на чертежах. Оно часто помогает в решение сложных задач.

Угол между биссектрисами любого треугольника

B ( triangle ABC )проведем две биссектрисы ( AO )и ( OC ).

Они пересеклись. Какой же угол получился у точки ( O )?

Давай его посчитаем. Ты помнишь, что сумма углов треугольника равна ( 180<>^circ ) ?

Применим этот потрясающий факт. С одной стороны, из ( triangle ABC ):

( angle A+angle B+angle C=180<>^circ ), то есть ( angle B=180<>^circ text< >-text< >left( angle A+angle C right) ).

Теперь посмотрим на ( triangle AOC ):

( angle 2+angle 6+angle 3=180<>^circ )

Но биссектрисы, биссектрисы же!

Значит ( left( triangle AOC right) )

Вспомним про ( triangle ABC : angle A+angle C=180<>^circ -angle B )

Значит, ( angle 6=180<>^circ -frac<180<>^circ -angle B><2>=90+frac <2>)

Теперь через буквы

Не удивительно ли?

Получилось, что угол между биссектрисами двух углов зависит только от третьего угла!

Ну вот, две биссектрисы мы посмотрели. А что, если их три?! Пересекутся ли они все в одной точке?

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector