0 просмотров

Исследование функции и построение графика

Исследование функции и построение графика

На этой странице мы постарались собрать для вас наиболее полную информацию об исследовании функции. Больше не надо гуглить! Просто читайте, изучайте, скачивайте, переходите по отобранным ссылкам.

Что будет дальше?

  • Общая схема исследования
  • Полный пример исследования функции
  • Примеры решений для разных типов функций
  • Сервисы построения графиков онлайн
  • Теория и практика: ссылки
  • Решебник
  • Видео

Исследование функции и на четность или нечетность

Когда выполняется условие y ( — x ) = y ( x ) , функция считается четной. Это говорит о том, что график располагается симметрично относительно О у . Когда выполняется условие y ( — x ) = — y ( x ) , функция считается нечетной. Значит, что симметрия идет относительно начала координат. При невыполнении хотя бы одного неравенства, получаем функцию общего вида.

Выполнение равенства y ( — x ) = y ( x ) говорит о том, что функция четная. При построении необходимо учесть, что будет симметричность относительно О у .

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Применение производной к построению графиков функций»

Сегодня на уроке мы приведём общую схему исследования свойств функции с помощью её производной. Будем строить график функции, используя результаты исследования.

Статья в тему:  Домик для детей на даче своими. Детский домик своими руками. Фото и идеи. Что можно построить своими руками

Прежде чем приступить к рассмотрению новой темы, давайте вспомним, что на предыдущих занятиях мы рассмотрели применение производной к нахождению промежутков возрастания и убывания функций. Выяснили, какие точки называют точками максимума функции и точками минимума функции. Научились находить эти точки и значения функции в них. Сегодня на уроке мы применим эти знания к построению графиков функций.

Давайте начнём с примера. Итак, постройте график функции .

Полученные результаты исследования функции удобно записать в виде следующей таблице.

В первой строке этой таблицы указаны в порядке возрастания критические точки функции и ограниченные ими промежутки. Во второй строке отмечены знаки производной на этих промежутках. В третьей строке записаны выводы о ходе изменения данной функции, в четвёртой строке – о виде критических точек.

При построении графика обычно находят точки пересечения графика с осями координат.

Построим график функции.

Получается, что для построения графика функции сначала исследуют свойства этой функции с помощью её производной.

Давайте приведём схему исследования свойств функции с помощью её производной.

Итак, при исследовании свойств функции надо найти:

1) область определения; производную; стационарные точки;

2) промежутки возрастания и убывания;

3) точки экстремума и значения функции в этих точках.

Результаты исследования удобно записать в виде таблицы, используя которую, строят график функции. Для более точного построения графика обычно находят точки пересечения с осями координат. Также можно найти координаты ещё нескольких точек графика.

Статья в тему:  Интерьер в стиле лофт в маленькой квартире. Небольшая однушка в стиле Лофт. Полное функциональное разделение, комфорт и порядок Дизайн маленькой квартиры в стиле лофт

Отметим, что для построения графика чётной (нечётной) функции достаточно исследовать свойства и построить её график при , а затем отразить его симметрично относительно оси ординат (начала координат).

Давайте построим график функции .

Полученные результаты исследования запишем в виде таблицы.

Найдём значение функции в точке – крайней точке рассматриваемого интервала. .

Построим график функции.

Так как рассматриваемая функция является нечётной, то её график при строим с помощью симметрии относительно начала координат.

Часто встречаются задачи, в которых требуется исследовать функцию не на всей области определения, а на некотором промежутке.

Давайте построим график функции на отрезке .

Запишем полученные результаты исследования функции в виде таблицы.

Получается, что график функции не пересекает ось абсцисс.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector